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Studies of angle-dependent magnetoresistance oscillations �AMRO� in the interlayer conductivity of layered
metals have generally considered semiclassical electron transport. We consider a quantum correction to the
semiclassical conductivity that arises from what can be described as an interlayer Cooperon. This correction
depends on both the disorder potential within a layer and the correlations of the disorder potential between
layers. We compare our results with existing experimental data on organic charge-transfer salts that are not
explained within the standard semiclassical transport picture. In particular, our results may be applicable to
effects that have been seen when the applied magnetic field is almost parallel to the conducting layers. We
predict the presence of a peak in the resistivity as the field direction approaches the plane of the layers. The
peak can occur even when there is weakly incoherent transport between layers.
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I. INTRODUCTION

Angle dependent magnetoresistance oscillations �AMRO�
are valuable tools for the investigation of properties of lay-
ered metals such as organic and cuprate superconductors.
The dependence of the interlayer magnetoresistance on the
direction of the magnetic field has been used to map out
three-dimensional Fermi surfaces, sometimes in exquisite de-
tail in a diverse range of layered metals. These include or-
ganic charge-transfer salts,1 strontium ruthenates,2,3 semicon-
ductor superlattices,4 monophosphate tungsten bronze,5 and
an overdoped cuprate.6–8 More recent developments have ex-
tended this to allow one to not only determine the anisotro-
pies in the Fermi surface, but also the anisotropy of scatter-
ing on the Fermi surface.7–13

In addition to the shape of the Fermi surface, the coher-
ence of interlayer transport in layered metals has been a com-
plicated and controversial issue.14 In order for AMRO to be
observable, only coherence between neighboring layers is
required, i.e., weakly incoherent transport, and for almost all
angles, this leads to AMRO that is equivalent to fully coher-
ent transport �i.e., there is a three-dimensional Fermi surface�
perpendicular to the planes.11,15 In general, the two situations
can be distinguished in transport measurements only if there
is a coherence peak in the resistivity for fields close to par-
allel to the layers. In this work, we show that quantum inter-
ference effects can also lead to a peak in the resistivity at
fields close to parallel to the layers, for weakly incoherent
transport. However, this peak can be distinguished from the
coherence peak by its magnetic-field and temperature depen-
dence, which is determined by the length scales and time
scales over which quantum coherence is destroyed.

The peak in the resistivity that we find for parallel fields
arises from a contribution to interlayer conductivity in a
magnetic field B=B�sin � cos � , sin � sin � , cos �� in lay-
ered metals which is a quantum correction to existing semi-
classical transport formulae.11,15 There has been previous
work in this direction,16–22 but this either focused on weak
localization in anisotropic metals, or did not consider the

magnetic-field configurations relevant for AMRO. Our work
is motivated by experiments in which deviations from con-
ventional AMRO are seen.13,23,24 The particular deviations of
interest are weak localization-like peaks at angles near �
=90°.23 We calculate the quantum contribution to the inter-
layer resistivity and show that it behaves in a similar way in
a perpendicular magnetic field to the Cooperon in a two-
dimensional electron system. We also show that a peak for
parallel magnetic fields emerges naturally for reasonable
choices of relevant materials properties, leading us to suggest
that this physics is relevant for a number of recent experi-
ments.

Our main results are an expression for the interlayer
Cooperon correction to interlayer conductivity and
asymptotic expressions for magnetic fields that are close to
parallel to the conducting layers. We demonstrate the pres-
ence of a small peak in the resistivity for such fields and
discuss the characteristic behavior with temperature and per-
pendicular magnetic field that allow this feature to be distin-
guished from coherence peaks at similar field orientations.

We note that the calculations we consider here may also
be of interest to those considering weak localization effects
in bilayer or multilayer graphene,27,28 semiconductor double
quantum wells,22 semiconductor quantum wells with inter-
subband scattering29 and superlattices.21

The paper is structured as follows: in Sec. II we briefly
review the physics associated with magnetoresistance due to
weak localization and discuss the experiments that motivate
our calculations. In Sec. III we give details of our calcula-
tions and results, and in Sec. IV we discuss the consequences
of our results for the interpretation of AMRO experiments,
particularly on the issue of coherent versus incoherent inter-
layer transport.

II. MAGNETORESISTANCE DUE TO
WEAK LOCALIZATION

The theory of weak localization in two-dimensional elec-
tron systems �2DES� is well established. Nevertheless, to

PHYSICAL REVIEW B 78, 024506 �2008�

1098-0121/2008/78�2�/024506�10� ©2008 The American Physical Society024506-1

http://dx.doi.org/10.1103/PhysRevB.78.024506


connect our calculations to experimental data showing un-
usual peaks in AMRO, we briefly discuss the key physical
quantities that determine the magnitude of weak localization
effects in 2DES.30,31 We then summarize our main results
and review relevant experimental data. The conductivity of a
2DES in a perpendicular magnetic field B� at temperature T
can be written as

��B�,T� = �cl�B�,T� + ���B�,T� , �1�

where �cl is the semiclassical conductivity and �� is associ-
ated with quantum interference effects and weak localization.
The relative magnitude of the two terms is of order �� /�cl
�1 /kF�, where kF is the Fermi wave vector and �=vF� is
the elastic mean-free path, with vF the Fermi velocity and �
the elastic-scattering time. Quantum effects are enhanced by
increased disorder, which reduces kF�. At low temperatures
in zero magnetic field

���T� � −
e2

2�2	
ln� ���T�

�
� , �2�

where �� is the inelastic-scattering time, which includes all
inelastic processes, e.g., electron-electron and electron-
phonon scattering. Generally, 1 /���Tp, with p
0, so the
resistivity diverges logarithmically with decreasing T.

The temperature dependent magnetic-field scale �the
phase breaking field� where quantum interference effects are
destroyed is �D= 1

2vF
2� is the diffusion constant�

B��T� =
	

4eD���T�
=

	

2e�2

�

���T�
. �3�

Suppression of quantum interference leads to negative mag-
netoresistance which is quadratic in B� for B��B��T�.30–33

When B0= 	

4eD� �B� and ���� �i.e., B0�B��T��, the
change in the quantum contribution to the conductivity due
to the magnetic field can be written in terms of �z�, the
digamma function,

�� 	 ��B�� − ��B� = 0�

=
e2

2�2	

ln� B�

B��T�� + �1

2
+

B��T�
B�

� ,

�
e2

48�2	
� B�

B��T��2

. �4�

Equation �4� can be used to fit experimental data for the
magnetoconductivity with one free parameter, ���T�. For thin
metallic films and semiconductor heterostructures, this has
proven to be a powerful method for determining the absolute
value and temperature dependence of the inelastic-scattering
rate.31,34

A. Summary of results

In this paper, we calculate the analog of weak localization
corrections to in-plane conductivity in the interlayer resis-
tance of layered metals. Our calculations establish the fol-
lowing:

�1� When the temperature is low enough that ����, and
B�=0, there will be a small increase in the interlayer resis-

tivity which is approximately logarithmic in temperature.
�2� At low temperatures, there will be a small negative

magnetoresistance on the scale of B��B0.
�3� Even when the field parallel to the layers B� is large,

there will still be a contribution to the resistance due to weak
localization similar to that which occurs in zero field. As the
field is tilted at an angle ��, slightly away from the layers,
there is a small perpendicular field, B��B��. Consequently,
a graph of the interlayer resistance versus � will have a nar-
row peak at �=� /2, with a width which is an inverse power
of B when ��
�. The field Ba �defined in Eq. �30�� sets the
field scale that cuts off the logarithmic divergence; the tem-
perature dependence of Ba implies that the height and width
of the peak are also temperature dependent. The height of the
peak relative to the background magnetoresistance will only
depend weakly on the strength of the field parallel to the
layers when B� 
Bp �defined in Eq. �5��.

�4� The resistance peak is quite distinct from the “coher-
ence” peak which can occur at �= �

2 if there is coherent
interlayer transport �i.e., a three-dimensional Fermi
surface�.1,15 The coherence peak only exists at very high
fields �B� �m�kFc��F / t� /e��T��, has a width ��
=2kFc�t� /�F� which is independent of temperature and field,
and its height relative to the background scales with B and
�.1,35

�5� There are two regimes of parallel field, separated by
an intermediate field scale,

Bp 	
	

ec�
. �5�

For B� �Bp, the corrections to the conductivity are essen-
tially independent of B�, whereas the semiclassical back-
ground does depend on B�. For B� �Bp, the correction to the
conductivity has the same B� dependence as the semiclassical
contribution, so that the relative resistivity correction �i.e.,
the shape of the peak� becomes a function of B� only near
�= �

2 .

B. Brief review of experimental results

There are several layered metallic systems for which
peaks in the interlayer resistance have been observed for
magnetic fields that are close to parallel to the conducting
layers. We review whether such peaks are likely to be weak
localization or coherence peaks.

1. ��-(BEDT-TTF)4AM(C2O4)3Y

A class of layered metals where weak localizationlike
peaks have been observed26 is the family of organic charge-
transfer salts ��-�BEDT-TTF�4AM�C2O4�3Y, where Y is a
solvent molecule, M =Ga,Cr,Fe, and A=H3O+. These mate-
rials have several features unlike other organic charge-
transfer salts that make them more likely to exhibit weak
localization effects: �a� smaller Fermi wave vector, �b� stron-
ger disorder, �both �a� and �b� reduce kF��, and �c� almost 3/4
filling, which enhances the strong electronic correlations
which narrow the electronic bands, reducing the Fermi en-
ergy �F.36
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The small Fermi surface has been established from
Shubnikov–de Haas �SdH� oscillations with period 330 T,
corresponding to a circular Fermi surface with kF=1 nm−1.
The corresponding Fermi-surface area is an order of magni-
tude smaller than in many ET materials. This arises because
the �� crystal structure leads to four bands, three of which
are almost completely filled,38 so the Fermi energy is near
the band edge. The effective mass associated with these SdH
oscillations is close to one free-electron mass and �F
�35 meV.

Evidence for strong disorder is seen in the Dingle tem-
peratures of 1–4 K estimated from SdH oscillations, which
are up to an order of magnitude larger than the cleanest or-
ganic charge-transfer salts.1 There is significant structural
disorder, especially in the anion layers.25 This has the conse-
quence that the ratio of the resistivity at room temperature to
that at low temperatures is of order one. In contrast, in many
metallic organic charge-transfer salts, this ratio is as large as
one thousand.39

In both the M =Ga and Cr �Y =C2H2Cl2� materials in zero
field, the interlayer resistivity increases approximately loga-
rithmically with temperature below about 20 K with a total
change of about 1% between 1 and 20 K.26 At a temperature
of 1.5 K, perpendicular fields of about 0.2 and 2 T destroy
this feature in the M =Ga and M =Cr materials, respectively.
Furthermore, as the field is tilted toward the plane of the
layers, there is a small peak in the interlayer resistance ver-
sus angle for both the M =Cr and M =Ga material at �
=� /2. The width of this peak, �� �in radians�, has a field
dependence Bx /B�, with Bx�0.25 T between about 3 and
14 T for the M =Cr material.26 The weak localization peak at
�=0 also occurs on the scale of Bx. The magnitude of the
peak is about 0.3% of the background magnetoresistance and
depends weakly on the parallel field. As the temperature in-
creases from 0.7 to 3 K, the peak becomes broader and
smaller, and is not visible at 6 K, whereas the background
magnetoresistance changes little in the same temperature
range.

2. �-[(ET)1−x(BETS)x]2KHg(SCN)4

In �-��ET�1−x�BETS�x�2KHg�SCN�4 with x�0.03, the re-
sistance versus temperature curve shows an upturn below
about 5 K.40 About 10% of this growth can be suppressed
with a magnetic field. The peak in the resistance that occurs
at �=� /2 is about 50 times broader than the coherence peak
that occurs in clean �-�ET�2KHg�SCN�4 samples at fields of
order a few tesla.24 For low fields, up to 1.5 T, the shape of
the peak depends only on B�, as would be expected for weak
localization, and at higher fields, the peak becomes broader.
The high-field behavior is not captured in our theory which
may be related to approximations we use that should break
down at very large fields �e.g., 15 T in this case�.

3. �-(BEDT-TTF)2Cu(NCS)2

The magnitude and temperature dependence of the
inelastic-scattering rate in �-�BEDT-TTF�2Cu�NCS�2 was
recently determined using AMRO.13 The data was fit to

1

��T�
=

1

�11
+ AT2, �6�

with �11�3 ps and A�0.006 ps−1 K−2. This temperature
dependence is consistent with that of the dc resistivity in
many organic charge-transfer salts.41 The first term is asso-
ciated with elastic scattering due to disorder and the qua-
dratic temperature dependence can be associated with inelas-
tic scattering due to electron-electron interactions. The ratio
of the inelastic-scattering time ���T� to the intralayer elastic-
scattering time is �� /�11=50�K /T�2. Thus, as the tempera-
ture increases from 1 to 20 K, the ratio decreases from 50 to
0.1.

We suggest that weak localization may be the origin of
the feature near �= �

2 that Singleton et al.13 assigned to the
coherence peak. The peak width appears to broaden with
increasing temperature �as would be expected for decreasing
��, and hence increasing B��T��. In earlier data on the same
material,23 the peak height drops with increasing temperature
and the peak width increases with increasing temperature.
For an inelastic-scattering rate that increases with tempera-
ture, this as would be expected for weak localization, since
B��T� increases with increasing temperature and the width of
the peak goes as B�, while its height should increase loga-
rithmically with temperature.

4. Intercalated graphite

A peak near parallel field has also been seen in interca-
lated graphite materials which display unusual inverted
AMRO.42 However, the width of the peak appears to be in-
dependent of magnetic field which would tend to argue
against weak localization effects.

III. MODEL AND CALCULATIONS

A. Interlayer charge transport

In previous work,11 we considered the AMRO that arises
when there is an anisotropic Fermi surface and anisotropic
scattering in two different limits. These two limits were the
limit of coherent interlayer transport and the limit of weakly
incoherent interlayer transport in which there is hopping be-
tween adjacent layers. We shall not consider anisotropy in
the Fermi surface, scattering, or the interlayer hopping here,
as these are additional complications beyond the physics that
is our main interest. For isotropic weakly incoherent inter-
layer transport the Hamiltonian describing interlayer charge
transport is

H = t� �
i,j=1,2

�ci
†cj + H.c.� , �7�

where t� is the interlayer hopping integral. We assume that
we are in weakly incoherent regime such that

t� �
1

�
. �8�

There is no observable difference in the AMRO between the
coherent and weakly incoherent models of interlayer trans-
port except for polar angles of the magnetic field very close
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to 90°, corresponding to a magnetic field parallel to the
planes.11,15 The interlayer conductivity that is deduced from
such a hopping Hamiltonian is:15

�� =
e2ct�

2

	�L2� d2r1� d2r2�G1
R�r1,r2�G2

A�r2,r1��

+ �G1
A�r1,r2�G2

R�r2,r1�� , �9�

where c is the interlayer spacing, L is the sample size, and
Gi

R�A� is the retarded �advanced� Green’s function in layer i.
The angle brackets �. . .� indicate an average over disorder.
Generically, in calculating the disorder-averaged conductiv-
ity, there are two classes of diagrams to consider, the ladder
diagrams that lead to the “Diffuson,” and the maximally
crossed diagrams that lead to the “Cooperon.”30,31 In our
previous work, we found that the AMRO from weakly inco-
herent interlayer transport could be derived using a
“Diffuson-like” equation.11 We expect that there should also
be a contribution to the interlayer conductivity from a
“Cooperon-like” process, that will have a different magnetic-
field dependence to the Diffuson term due to their differing
time-reversal properties. It is this question that we address in
this paper, and we find that indeed, an extra quantum correc-
tion to the interlayer conductivity is generated. Moreover, it
has distinct experimental signatures.

B. Impurity correlations in a layered metal

We now discuss the properties of the probability distribu-
tion for impurities in a layered metal, and their consequences
for impurity correlations. We assume that the probability dis-
tribution p�r� for the locations of impurities can be factor-
ized into separate distributions describing the distributions
parallel �p��x ,y�� and perpendicular �pz�z�� to the layers21

p�r� = p��x,y�pz�z� .

We assume that an individual impurity �or lattice defect� lo-
cated at R has a potential Vimp�r−R� associated with it, and
that

�V�r�� = ni� d3r�p�r��Vimp�r − r�� = 0.

Correlations in the random potential take the form

�V�r�V�r��� = ni� d3r�p�r��Vimp�r − r��Vimp�r� − r��

= ni� d2r�p��x�,y��� dz�pz�z��

�Vimp�r − r��Vimp�r� − r�� . �10�

We shall assume that there is a uniform distribution of im-
purities in the planes parallel to the conducting layers, i.e.,
p��x ,y�= 1

L2 , where L is the sample size. All structure in the
impurity distribution is thus in pz which will tend to be
peaked in the regions in between conducting layers. We note
that periodicity and inversion symmetry imply that p�z�
= p�−z�= p�z+c�.

We give a layer index to the random potential Vj depend-
ing on whether the electron z coordinate lies in layer 1 or

layer 2. There will then be two important types of disorder
correlations, �Vi�r��Vj�r��, where i and j are layer indices.
First, correlations within a single layer, �V1�r��V1�r��, con-
tribute to the in-plane elastic-scattering rate and appear in the
disorder-averaged single layer Green’s functions. Second,
correlations between layers, �V1�r��V2�r��, are relevant for
interlayer conductivity. The corresponding expressions are
�using the symmetry properties of pz�:

�V1�r��V1�r�� =
ni

L2� d2r��
−c/2

c/2

dzpz�z�

�Vimp�r� − r�,z�Vimp�r − r�,z� , �11�

�V1�r��V2�r�� =
ni

L2� d2r��
0

c

dzpz�z�

�Vimp�r� − r�,c − z�Vimp�r − r�,− z� ,

�12�

C. Elastic scattering times in a layered metal

In order to be clearer as to what we mean by an interlayer
Cooperon, we now discuss the nature of the disorder poten-
tial and the associated elastic-scattering times. We shall as-
sume that disorder correlations can be represented as delta
correlated, i.e.,

�Vi�r��Vj�r�� = Ūij
2 ��r − r�� , �13�

where i , j=1,2. It is useful to rewrite

Ūij
2 =

	3

m��ij
=

	

2�ij

1

�Ns
, �14�

where Ns= m�

2�	2 is the two-dimensional density of states, not
including spin degeneracy, and m� is the effective mass.
Thus, there are two distinct elastic-scattering times associ-
ated with the disorder. �11=�22 is the scattering time for in-
plane elastic scattering, while �12=�21 is the scattering time
corresponding to scattering correlations between adjacent
layers. If the impurities are all equidistant between the lay-
ers, i.e., p�z� has a maximum at z= �c /2, then we will have
�11��12, whereas if the impurities are located in the con-
ducting layers, we expect �11��12.

We note that previous theoretical treatments of AMRO
have not considered the possible role of disorder correlations
between neighboring layers which could also modify the
semiclassical interlayer conductivity.43

D. Interlayer Cooperon in the absence of magnetic field

The conductivity diagrams corresponding to the situation
we consider are as shown in Fig. 1. Following the treatment
of the two-dimensional problem by Rammer30 or Datta,31 we
can write the correction to the interlayer conductivity from
the Cooperon �in zero magnetic field� as
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���
C =

e2ct�
2

�	L2� d��−
� f

��
�� d2r1� d2r2� d2r3� d2r4

� �G1
R�r1,r3�G1

R�r4,r2�Ū12
2 C12�r3,r4�

� G2
A�r2,r3�G2

A�r4,r1� + G1
A�r4,r1�G1

A�r2,r3�

� Ū12
2 C21�r3,r4�G2

R�r1,r3�G2
R�r4,r2�� , �15�

where C̃= Ū12
2 C is the Cooperon �Fig. 2�. The diagrammatic

expansion of the Cooperon in Fig. 2 implies the following
equation for the interlayer Cooperon:

C12�r,r�� = ��r − r�� +� d2r�J̃12
C �r,r��C12�r�,r�� , �16�

where

J̃12
C �r,r�� = Ū12

2 G1
R�r,r��G2

A�r,r�� , �17�

is the Cooperon insertion. We can Taylor expand C12�r� ,r�
and obtain30 the following generalization of the standard
equation for the Cooperon in the experimentally relevant
limit that the in-plane elastic-scattering time, �11, is much
less than the inelastic-scattering time, �11���:


 1

�a
− Da�r

2C12�r,r�� =
1

�11
��r − r�� , �18�

which has the same form as the equation for the intralayer
Cooperon, except that the diffusion constant is

Da =
�11

�12
D0 =

vF
2�11

2

2�12
, �19�

and the scattering rate which destroys the interlayer Coop-
eron is

1

�a�T�
=

1

�11
−

1

�12
+

1

���T�
. �20�

In contrast, the first two terms do not appear for the intra-
layer Cooperon. For a general impurity potential, �11��12
and so the effective dephasing rate will have a nonzero value
at zero temperature. The structure of this expression has
some similarities to what occurs with spin-orbit scattering32

or intervalley scattering.27

E. Interlayer Cooperon in the presence of a magnetic field

In the presence of a magnetic field parallel to the layers,
we note that Green’s functions in layers 1 and 2 are related
by a gauge factor15

G1�r,r�� = exp� iec

2	
B� · �r − r���G2�r,r�� ,

and that Green’s functions can be written as a gauge depen-
dent phase multiplying a gauge-invariant piece:

G�r,r�� = exp� ie

	
�

r�

r

A� · dl�G0�r,r�� ,

where A� is the vector potential associated with the perpen-
dicular magnetic field B� and then

J̃12
C �r,r�� → J̃12

C,0�r,r��exp� iec

2	
B� · �r − r���

�exp�2ie

	
�r − r�� · A��r�� . �21�

This allows us to generalize Eq. �18�, as follows. We
choose the Landau gauge to determine the perpendicular
field, make a gauge transformation to eliminate the B�

dependent term, and end up with an equation for
C12� �r ,r��=exp� iec

2	 B� · �r−r���C12�r ,r�� which is �when we

approximate J̃12
C,0 by its zero-field value�


 1

�a
− Da��r −

2ie

	
A��2C12� �r�,r� =

1

�11
��r − r�� .

�22�

Note that the approximation of J̃12
C,0 by its zero-field value

implies that for high enough fields, our expressions will not
be applicable. Now, C12�r3 ,r4��C12�r3 ,r3�, since the Coop-
eron is dominated by loops of time-reversed paths, and in a
perpendicular magnetic field B�, the solution of equations of
the form of Eq. �22� is well known.30,33 For our parameters
this is

r1 r2

r3 r4

r1 r2

r3 r4

1

2

R,1R,1

A,2

A,2

1

2

R,2

A,1
A,1

R,2

+

C

C
~

~

FIG. 1. Diagrams for the quantum correction to the interlayer

conductivity. Note that C̃= Ū12
2 C is related to the interlayer Coop-

eron. This is a diagrammatic representation of Eq. �15�.

+ . . .r’

r’ r’ r’

1

2

r =C +

1

2

r

+

r R, 1 R, 1

A, 2 A, 2

R, 1

A, 2

r

FIG. 2. Diagrams that give rise to the “interlayer Cooperon,”
described by Eq. �16�. Neighboring layers are indicated as 1 and 2.
A and R denote advanced and retarded Greens functions,
respectively.
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C12� �r3,r3� =
2eB�

2�	
�
n=0

nmax 1

4Da�e�B�

�11

	
�n +

1

2
� +

�11

�a

,

�23�

with nmax� lB
2 /�2,30 where �=vF�11 is the in-plane mean-free

path.
To calculate the conductivity, we need to take into ac-

count the phase acquired by the propagators due to the vector
potential differing in each layer. Thus, considering the first
term in the conductivity �since the second term is its com-
plex conjugate� and switching to momentum space propaga-
tors the expression simplifies to:

���
C = 2 Re� e2ct�

2 Ū12
2

�	L2 � d2k1

�2��2

d2k2

�2��2GR�k1�GR�k2�

� GA�k1 +
ec

2	
B��GA�k2 +

ec

2	
B��

�� dr3� dr4C12�r3,r4�ei�k1+k2�·�r3−r4�� . �24�

Making use of Eq. �23� we obtain the expression

���
C =

2ce2t�
2 Ū12

2

�	
� eB�

�	
��

n=0

nmax Re�F�B���

4Da�e�B�

�11

	
�n +

1

2
� +

�11

�a

.

�25�

In the Appendix we show that for ecB� �	kF �the experimen-
tally relevant limit�

Re�F�B��� � −
2m��11

3

	5 f� e

	
B�c�� , �26�

where

f�x� 	
1 +

x2

8

�1 +
x2

4
�3/2 . �27�

Note that f�x��1− x2

4 for x�1 and f�x�� 1
x for x�1.

We can rewrite Eq. �25� in a similar form to the magne-
toresistance in a thin film33 using the properties of the di-
gamma function �x�,44 which is related to the sum we have
obtained via

�x + n + 1� − �x� = �
m=0

n
1

x + m
.

Hence, we obtain

���
C �B�� = − �1�� Ba

B�

+ nmax +
3

2
� − � Ba

B�

+
1

2
�� ,

��1�ln�B�

B0
� + �1

2
+

Ba

B�

�� , �28�

with B0= 	

e�2 , and

�1�B�� =
2ce2t�

2

�2	3vF
2 f� B�

Bp
� , �29�

where Bp is the field scale defined in Eq. �5�.
The magnetic-field dependence is of the same form as that

for the weak localization correction to the intralayer conduc-
tivity, Eq. �4�, with B��T� replaced by the magnetic-field
scale

Ba�T� 	
	

4eDa�a�T�
, �30�

where �a is given by Eq. �20�. Consequently, we note that
unlike the phase breaking field associated with the intralayer
conductivity that in general this quantity will be nonzero
even at zero temperature. In the absence of a perpendicular
magnetic field, the interlayer Cooperon correction to conduc-
tivity reduces to

���
C �B� = 0,T� = �1 ln� �12

�a�T�� . �31�

Thus, the interlayer resistivity increases logarithmically as
the temperature decreases.

We now compare these quantum corrections to the semi-
classical conductivity which describes conventional AMRO.
The latter is given by15

�conv�B� = �0 �
n=−�

�
Jn�� tan ��2

1 + �n�0�11 cos ��2 , �32�

where �=ckF, Jn�z� is the Bessel function of order n, �0

= eB
m� , and the conductivity at zero field and at �=0 is

�0 =
2ce2t�

2 m��11

�	4 . �33�

We can estimate the relative size of the quantum correction
to the conventional term as

�1

�0
=

f� e

	
B�c��

�kF�
�

1

kF�
, �34�

for fields such that eB�c� /	�1. This indicates that the ef-
fects we discuss here are most likely to be seen in “dirty”
samples �i.e., short mean-free path� and with a small Fermi
surface.

F. Peak in the vicinity of �=� Õ2

Now, nmax depends on polar angle—as �→ �
2 , B�→0 and

hence nmax→�. Using the asymptotic expansion of �x� at
large x, we obtain �in the limit that

B0

Ba
�

�a

�11
�1�
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��C � − �1�ln�B0

Ba
� −

B�
2

24Ba
2� . �35�

This correction will have two different dependences on par-
allel field arising from f� e

	B�c��. At fields much less than
Bp=	 /ecl it will be independent of parallel field, while for
fields larger than Bp it takes the form

��C � −
�0

�kF�

Bp

B�
�ln�B0

Ba
� −

B�
2

24Ba
2� . �36�

In the limit that �→ �
2 , we can also compare with the limit

from �conv which can be obtained by standard saddle-point
methods applied to an integral representation of Eq. �32�. In
the limit that � tan ��1,15

�conv � �0
Bp

B�
�1 + 2 exp�−

�

�0�11 cos �
�sin �2� tan ��� .

If we compare the two contributions in the limit that �→ �
2 ,

for fields larger than Bp, then we find that the size of the
quantum correction relative to the semiclassical magnetocon-
ductivity is the same as for the zero-field correction and has
the same temperature dependence

��C

�conv
� −

1

�kF�
ln� �12

�a�T�� . �37�

In order to compare with experiment, it is useful to sepa-
rate the conductivity as ��B�=�back�B�+���B�, where
�back�B�=�conv�B�+��C�B�=0�, since it is only the negative
magnetoresistance for increasing B� that will be visible.
Defining �back=1 /�back, we have

�zz

�back
� 1 −

��C

�back
,

which implies a decrease in the resistivity, which grows as
B� increases, i.e., as � deviates from �

2 . In consequence,
there will be a peak above the background resistance at
�= �

2 .

IV. DISCUSSION

The correction to the resistivity at �= �
2 , we found in Sec.

III, is much smaller in magnitude than the conventional term,
but since conventional AMRO are featureless in this region,
this quantum contribution can still be visible above the back-
ground. The Cooperon should lead to a small peak in the
resistivity in the vicinity of �= �

2 . The values of � for which
this should be true are those such that both asymptotic for-
mulae hold, i.e., cos ��1 / �ckF� and B cos �=B��Ba.

A. Numerical results

We now evaluate the resistivity correction obtained in
Sec. III, Eq. �28�, for parameters appropriate for
�-�ET�2KHg�SCN�4 �Refs. 1 and 24�. Figure 3 shows the
calculated temperature dependence and Fig. 4 shows the an-
gular dependence. We calculate the dependence of the inter-
layer resistivity on temperature, field, and field direction. We

choose kF=1.4 nm−1, �F=40 meV, �11=1 ps, �12=1.01�11,
and c�20 Å. �11 is of the order of the scattering time in the
dirty sample considered in Ref. 24, and we choose �12 very
close to �11 for our numerics since the visibility of the peak is
maximized when �11��12, which implies �a��� and grows
very large as T→0. We choose �a=20 ps for numerical con-
venience, which implies ��=25 ps from Eq. �20�. From Eq.

1
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T
=
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B = 0.2 B0
B = 0.5 B0

B = B0

FIG. 3. �Color online� Interlayer resistivity as a function of tem-
perature for several different magnetic fields perpendicular to the
layers. In the absence of the field, the resistivity increases logarith-
mically with temperature due to weak localization effects provided
that the inelastic scattering is small enough �in the figure this is
masked by the quadratic increase in the resistivity with tempera-
ture�. As the magnetic field becomes comparable to the field B0, the
feature disappears. The resistivity is normalized to its value at 0.6
K. The parameters used in these plots are kF=1.4 nm−1, c=2 nm,
�11=1 ps, �12=1.01�11, �F=40 meV, and 1 / ����T� /ps�
=0.006�T /K�2.
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FIG. 4. �Color online� Interlayer resistivity as a function of the
angle �, between the magnetic field and the normal to the layers.
The peak at 90 degrees is due to weak localization effects. Note that
it is only about 0.5 percent of the total resistivity. The resistivity is
normalized to the sum of the semiclassical resistivity and the zero-
field quantum correction. As the magnetic field increases from 2 to
20 T, the size of the peak decreases and its width increases. The
parameters used in these plots are kF=1.4 nm−1, c=2 nm, �11

=1 ps, �12=1.01�11, �F=40 meV, and �a=20 ps.
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�6� we see that ���25 ps at T�2.6 K, so this appears to be
a reasonable choice for �a. These choices correspond to fields
of B0�0.09 T and Ba�0.002 T. The width of the peak is
approximately ��=0.5° and the height of the peak is about
0.5% of the background resistance at all fields larger than
2 T.

In Fig. 5 we replot the data from Fig. 4 as a function of
B�=B cos���. It is clear that as B increases, the peak be-
comes a function of B� only. We determined the width of the
peak in two different ways: i� by choosing a fixed value of
���� /���= �

2 �, and then determining the appropriate �� as a
function of B, and ii� by subtracting the �nonflat� background
and finding the value of �� corresponding to the half-
maximum of the peak. In case i� ���B−1 for essentially all
values of B, whereas for case ii� ���B−1/2 for B�Bp
�4 T.

The results in Figs. 5 and 6 are qualitatively in accord
with recent experiments on the resistivity in
��-�BEDT-TTF�4�H3OCr�C2O4�3�CH2Cl2, in which a peak

that depends only on B cos��� for small � and a peak width
���1 /B were observed.26 Additionally, features in unpub-
lished data40 on �-��ET�1−x�BETS�x�2KHg�SCN�4 with x
�0.03 appear to be consistent with the picture presented
here.

B. Implications for experiment

Inelastic scattering plays an important role in determining
when a resistivity peak will be observed. A reasonable tem-
perature dependence of the inelastic-scattering rate implies
that at high temperatures, the inelastic-scattering time is
much less than the elastic-scattering time ����11. At a tem-
perature where the two become comparable, one might ex-
pect to see the first hints of a resistance peak which narrows
and grows with decreasing temperature until the peak width
and height saturate. We expect that there will be a saturation
when 1 /�a reaches its low-temperature limit �� 1

�11
− 1

�12
�

which is generally nonzero. The visibility of the peak is larg-
est when �a��11, which will be true when �12 is very close
in magnitude to �11.

In concert with the magnetic-field-dependent signatures
discussed above, the temperature and magnetic-field depen-
dence of such a peak in the resistivity should allow it to be
distinguished from coherence peaks, whose width and height
should have much weaker dependence on temperature and
magnetic field.15 As a consequence, these localization peaks
also offer an opportunity to determine the inelastic-scattering
rate, independent of regular AMRO which allow a determi-
nation of the elastic-scattering rate, and quantum oscillations
which allow a determination of the total scattering rate
through the Dingle temperature.

Some questions that we have not addressed here but pro-
vide interesting avenues for further exploration are with re-
gards to the effects of anisotropy and the coherence of inter-
layer transport. Our calculation was for an isotropic Fermi
surface with isotropic elastic scattering—in general one can
expect Fermi-surface properties to vary on different parts of
the Fermi surface, which would likely imply that the nature
of the peak for parallel fields will also depend on the orien-
tation of the magnetic field within the plane. This might al-
low the possibility of investigating the inelastic scattering on
different parts of the Fermi surface. Second, our derivation
assumed weakly incoherent interlayer transport. However, it
appears likely to us that similar results should also hold for
coherent interlayer transport, and so the presence or absence
of this weak localization peak is not necessarily evidence for
or against coherent interlayer transport. The visibility of the
peak will be stronger in samples with relatively smaller val-
ues of kFl, corresponding to smaller values of �, but the
criterion usually used to argue coherence of interlayer trans-
port is comparing the hopping amplitude, t�, with the scat-
tering rate 	

� .
We have discussed here the analog of weak localization in

the interlayer resistance of layered metals, assuming simple
potential scattering. Other scattering mechanisms, such as
magnetic impurity scattering, and spin-orbit scattering, can
lead to additional contributions to magnetoresistance, such as
weak antilocalization in the case of spin-orbit scattering.32
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FIG. 5. �Color online� Resistivity data from Fig. 4 plotted as a
function of the magnitude of the magnetic field parallel to the layers
B cos � for B
Bp.
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FIG. 6. �Color online� Width of the peak in the resistivity about
�=90° as a function of field for the data in Fig. 4. The width is
determined either by a fixed drop in the resistance or by subtracting
the background. Fits to both procedures are shown, both of which
work well for B
Bp�4 T.
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The presence of magnetic ions in many �� organic salts sug-
gests that these should perhaps be considered as possibilities.
Magnetic impurity scattering tends to depress the effects of
weak localization, but if there is strong spin-orbit scattering,
this may lead to additional effects in the vicinity of �= �

2 . We
are not aware of experiments that exhibit these features, but
hope that our work may stimulate investigations in this di-
rection.

V. CONCLUSIONS

In conclusion, we have calculated the effect of the inter-
layer Cooperon on AMRO in quasi-two-dimensional layered
metals. The interlayer Cooperon can give rise to a peak in the
magnetoresistance for fields parallel to the layers that behave
similarly to conventional weak localization. The features of
the peak depend sensitively on magnetic field and the
inelastic-scattering time, which should allow it to be distin-
guished from coherence peaks seen in very low disorder lay-
ered metals. This potentially allows for the extraction of in-
formation about inelastic scattering in layered metals, and
gives another tool with which to learn about the physics of
these systems.
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APPENDIX: CALCULATION OF F(B¸)

To calculate F�B�� we need to perform an integral over
four in-plane disorder-averaged Green’s functions

F�B�� =� d2k1

�2��2GR�k1�GR�− k1�

�GA�k1 +
ec

2	
B��GA�− k1 +

ec

2	
B��

=� d2k1

�2��2� 1

E − �k + i�
�2 1

E − �k−� − i�

�
1

E − �k+� − i�
, �A1�

with �=	 /2�11, �k= 	2k2

2m� , and �k−�=�k−�2�k

m� � cos �+ �2

2m� ,
with �= 1

2ecB�. Rewriting Eq. �A1� as an integral over energy
and performing the energy integral using contour integration,
we get

F�B�� =
m�

8�	2�3�
0

2�

d��1 −
�2

4im��
cos�2���

�
1

�1 − i
�2

4�m� + i
�	k

2�m�cos ��2

� � 1

�1 − i
�2

4�m� − i
�	k

2�m�cos ��2�
�k=E+i�

.

�A2�

The second term in the denominators is much smaller than
the third term if ��2	kF. This corresponds to B�

�4	kF / �ec��O�100T�, which is always satisfied for physi-
cally realistic parameters. We then have

Re�F�B��� = −
m�

4	2�3 f��vF

�
� . �A3�

where

f�x� 	
1

2�
�

0

2� d�

�1 + � x

2
�2

cos2 ��2 . �A4�

Evaluating this by contour integration gives Eq. �27�.
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